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Stability Radius as a Method for Comparing the
Dynamics of Neuromechanical Systems

Jeffrey T. Bingham and Lena H. Ting

Abstract—Robust motor behaviors emerge from neuromechan-
ical interactions that are nonlinear, have delays, and contain
redundant neural and biomechanical components. For example,
in standing balance a subject’s muscle activity (neural control)
decreases as stance width (biomechanics) increases when re-
sponding to a lateral perturbation, yet the center-of-mass motion
(behavior) is nearly identical regardless of stance width. We
present stability radius, a technique from robust control theory,
to overcome the limitations of classical stability analysis tools,
such as gain margin, which are insufficient for predicting how
concurrent changes in both biomechanics (plant) and neural
control (controller) affect system behavior. We first present the
theory and then an application to a neuromechanical model
of frontal-plane standing balance with delayed feedback. We
show that stability radius can quantify differences in the sen-
sitivity of system behavior to parameter changes, and predict
that narrowing stance width increases system robustness. We
further demonstrate that selecting combinations of stance width
(biomechanics) and feedback gains (neural control) that have the
same stability radius produce similar center-of-mass behavior in
simulation. Therefore, stability radius may provide a useful tool
for understanding neuromechanical interactions in movement
and could aid in the design of devices and therapies for improving
motor function.

Index Terms—robust control, neural engineering, delay sys-
tems, neurofeedback, biomechanics.

I. INTRODUCTION

B IOLOGICAL systems are composed of many complex,
interacting components and as Aristotle remarked over

two millennia ago “. . . the whole is something beside the
parts.” Even with sophisticated computational models, behav-
iors resulting from such interactions are difficult to analyze
and compare using tools from classical control theory that
divide a system’s dynamics into components that are to be
controlled (plant) and those that are added to achieve a
desired behavior (controller). For example, neuromechanical
models of human movement contain redundant biomechanical
and inherently delayed neural feedback control components
that can change concurrently in order to achieve a desired
behavior. Unfortunately, classical stability analysis tools, such
as gain margin [1], cannot be used to compare behavior
across neuromechanical conditions where both biomechanics
(plant) and neural control (controller) change during a task.
To overcome these challenges we introduce the technique
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of stability radius, an approach that builds upon eigenvalue
analysis as a compact representation of dynamical behavior.

The technique of stability radius is useful for identifying
different sets of parameter values that can produce similar
behaviors, or quantifying the sensitivity of a system’s stability
to parameter changes. The mathematical theory is derived from
the fields of pseudospectral analysis [2], [3] and robust control
[4], [5]. Initially developed for linear time invariant systems,
it has been expanded to systems with feedback delays [6]–[8].
Many techniques for stability analysis, such as Lyapunov’s
indirect method, utilize eigenvalues to classify the stability
of dynamical behavior. However, the eigenvalues by them-
selves do not indicate sensitivity of stability to perturbations,
modeling errors or parameter changes. Furthermore, it may
be difficult to calculate eigenvalues for some systems, e.g.
delayed systems having an infinite number of eigenvalues. In-
stead of using eigenvalues directly to characterize stability, the
stability radius gives a scalar measure of the smallest change
to any system parameter that would result in instability. This
provides a single measure to compare stability of one system
against itself as parameters change, as well as against entirely
different systems. Stability radius can also be used to test the
sensitivity of system stability to model parameters. This single
number can be used to classify a system’s dynamical behavior
on a relative scale of stability and to predict system responses
across different modeling conditions.

Given these characteristics, stability radius may be well
suited to quantify changes in stability due to changes in biome-
chanical and neural feedback parameters in neuromechanical
systems. Neuromechanical systems in different biomechanical
contexts can achieve similar motor performance by altering
biomechanical configuration, neural strategy, or both [9].
Experiments in the upper extremity suggest that changes in
biomechanical configuration and neural control are the result
of a neural strategy to maximize stability in the presence
of a disturbance [10]–[12]. Here, our application of the sta-
bility radius to the control of frontal-plane balance control
is motivated by the experimental observation that subjects
respond to support surface translations in the frontal-plane
with nearly identical center-of-mass motion regardless of their
stance width [13]; however, muscle activity is observed to
decrease as stance width increases, demonstrating a concurrent
change in neural control [13]–[15]. We propose that the
similar behavior observed across stance widths during standing
balance may be the result of a neural strategy to select
feedback gains that maximize stability for a given stance
width. Previously, we developed a model of frontal-plane
balance that demonstrated increasing stance width necessitates
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decreasing delayed feedback gains to maintain stability [16].
However, using classical stability analysis we were not able
to compare stability across biomechanical contexts and could
not quantify the contribution of neural versus biomechanical
parameters in achieving a given behavior. This was because
traditional tools to compare stability, such as gain margin,
are formulated based on the premise that the stability of the
plant, or musculoskeletal system in our case, is fixed and only
alterations to control affect stability.

Here we present the theoretical background and context
to introduce the stability radius technique for a linearized
system with and without delays. Next, we apply this tech-
nique to our frontal-plane model of balance control [16] to
illustrate its utility in characterizing changes in stability from
different delayed feedback gains (controller parameters) and
stance widths (plant parameters). We use stability radius to
identify feedback gains that produce either maximum stability
or similar performance across stance widths, i.e. postural
configurations. We show that model feedback parameters that
have the same stability radius across postural configurations
also produce similar trajectories in simulations. The stability
radius therefore predicts how neural control and biomechanical
parameters interact to produce a desired behavior.

II. THEORY

We introduce stability radius as a robust measure of the sen-
sitivity of a system’s asymptotic stability to parameter changes.
Starting with the linearized equations of motion we provide a
brief overview of how to identify the characteristic equation
and the eigenvalues for non-delayed and delayed systems.
Next, we introduce ε-pseudospectra as a method to analyze
the sensitivity of eigenvalues to parameter changes. Finally,
we connect the concepts of stability and ε-pseudospectra to
give a definition of stability radius.

A. Characteristic equation

Here we show how to generate a characteristic equation
for a large class of ordinary differential equations (ODEs)
with delays. We start our discussion assuming the dynamic
equations are linear and first-order. This can be achieved for
nonlinear systems by linearizing the ODE about an equilibrium
point using Taylor-series expansion and converting higher-
order linear ODEs into a system of first-order ODEs [17].
We first show how to generate the characteristic equation for
a linear system of first-order ODEs without delays and then
expand this to delayed systems.

A system of linear, constant-coefficient, first-order ODEs
can be described with a system matrix, A, and state vector, x.

d

dt
x (t) + Ax (t) = 0 (1)

The deterministic solution for this system is a matrix expo-
nential (2), which can be evaluated by writing the system as
(3) where the new matrices are the result of the eigenvalue
decomposition, A = UΛU−1.

x (t) = eAtx0 (2)

x (t) = UeΛtU−1x0 (3)

The matrix, Λ, is a diagonal matrix whose elements are the
eigenvalues of the matrix, A, and are found algebraically by
solving for the roots of the characteristic equation (4) [17].

det (A− λI) = 0 (4)

A similar method can be applied to linear, constant-
coefficient, delayed differential equations (DDE) of the re-
tarded type (5). A retarded DDE has delays only in differential
terms whose order is less than the maximum differential order
of the system. This form of equation can be written where
the terms collected in matrix, Ak, are associated with the k-th
delay, τk.

d

dt
x (t) + A0x (t) +

∑
k=1

Akx (t− τk) = 0 (5)

The characteristic equation for the delayed system (6) now
includes exponential terms [18]. The addition of transcendental
functions results in an infinite number of solutions to this
characteristic equation [19]; therefore, DDEs of this form will
have an infinite number of eigenvalues.

det

(
A0 +

∑
k=1

Ake
−τkλ − λI

)
= 0 (6)

B. System stability

Eigenvalues are critical descriptors of a dynamical system’s
stability. We first give an overview of the definition of eigen-
values of a matrix, show how this leads to a characteristic
equation and then define asymptotic stability.

The eigenvalues of a system are the set of complex values,
λ ∈ C, for a matrix, A ∈ Cn×n, associated with eigenvectors,
v ∈ Cn 6= 0, that satisfy (7).

Av = λv (7)

After rewriting (7) we require that solutions for eigenvalues
and eigenvectors non-trivially satisfy the following relation.

(A− λI)v = 0 (8)

For (8) to hold and satisfy v 6= 0, then the resulting matrix
of (A− λI) must be singular. In other words, if the inverse
existed (i.e. the matrix was non-singular) then v = 0, which
violates the definition of the eigenvector. Thus, to ensure that
the matrix is singular its determinant must be zero. This leads
to the characteristic equation for a matrix, which is identical
in form to the characteristic equation of an ODE (4).

det (A− λI) = 0 (9)

In linear ODEs, with or without delays, eigenvalues are
the exponential constants that define the time evolution of
the system behavior. Eigenvalues with positive real part are
considered unstable, because as time advances the eventual
behavior of the system will tend to depart from equilibrium.
Thus, asymptotic stability of a linear system is defined by
all eigenvalues having strictly negative real part. Similarly,
this definition of asymptotic stability may be extended to the
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class of non-linear ODEs with Lyapunov’s Indirect Method,
which states that the eigenvalues of the linearized system
about an equilibrium point describe the system’s stability if
the eigenvalues are not identically zero [20].

C. ε-pseudospectra

Here we define ε-pseudospectra and show its relationship to
eigenvalues. We give equations for calculating ε-pseudospectra
and then describe how this gives a measure of sensitivity of
eigenvalues to parameter changes.

The sensitivity of an eigenvalue to parameter change can be
found by comparing eigenvalues of the original system to new
eigenvalues calculated from a system with altered parameters.
For a specified magnitude of parameter change there are a
set of new eigenvalues, which are displaced by some amount
compared to the eigenvalues of the original system. This set
of new eigenvalues (10) is the ε-pseudospectra for a corre-
sponding set of parameter perturbations, E ∈ Cn×n, whose
magnitude is less than a specified value, ε. The magnitude of
the perturbation matrix, E, can be evaluated using any matrix
norm and we will use the Frobenius norm, or 2-norm. Thus,
the distribution of ε-pseudospectra about the eigenvalue give
a measure of sensitivity to a specified amount of parameter
change.

z ∈ eig (A + E) with ‖E‖ < ε (10)

An alternate definition, to avoid calculating eigenvalues di-
rectly, is to use the knowledge that the ε-pseudospectra are the
perturbed eigenvalues, z = λ+δ. First, consider the definition
of the new eigenvalues, with normalized eigenvectors, |v| = 1.

(A + E)v = zv (11)

Next, the parameter perturbation matrix is defined as, E =
suv∗, with s < ε, and |u| = 1. Here we use the notation of a
superscript asterisk to designate the complex conjugate of v
as v∗. Then, we introduce the resolvent (12) of the matrix, A,
at a scalar value, z ∈ C [3].

R (z) = (A− zI)−1 (12)

Note that the resolvent evaluated at the eigenvalues of A will
produce a singular matrix having a norm with infinite magni-
tude. Furthermore, the norm of the resolvent evaluated away
from the eigenvalues will, by definition, be non-singular and
finite. Using these definitions equation (11) can be rewritten
as (13e) in terms of the resolvent and the definition of the
parameter perturbation.

zv − Av = Ev (13a)
− (A− zI)v = suv∗v (13b)

−s−1 (A− zI)−1 (A− zI)v = s−1 (A− zI)−1 su (13c)

−s−1v = (A− zI)−1 u (13d)

−s−1v = R (z)u (13e)

Taking the norm of (13e) relates the magnitude of the resolvent
to the the magnitude of the parameter change. This is accom-
plished by using the property of a norm that ‖X‖‖Y‖ ≥ ‖XY‖.

‖R (z)u‖ = ‖ − s−1v‖ (14a)

‖R (z) ‖‖u‖ ≥ ‖R (z)u‖ = s−1‖v‖ (14b)

‖R (z) ‖ ≥ s−1 > ε−1 (14c)

Finally, the ε-pseudospectra are now defined as the values for
which the inverse of the resolvent is less than a specified
magnitude of parameter perturbation.

‖R (z) ‖−1 < ε (15)

This form also allows for a compact extension to ODEs with
delays by using the resolvent for delayed differential equations
[8].

R (z) =

(
A0 +

∑
k=1

Ake
−τkz − zI

)−1
(16)

Simplified calculation of the ε-pseudospectra can be
achieved by using the Frobenius norm, or matrix 2-norm, in
conjunction with properties of singular value decomposition
(SVD). A property of the SVD is that the largest singular
value, smax, of a matrix, B, is equivalent to the matrix’s
Frobenius norm. In addition, the largest singular value, smax,
of a matrix’s inverse is equal to the inverse of the smallest
singular value, smin.

‖ (B)−1 ‖ = smax

(
(B)−1

)
= (smin (B))

−1 (17)

Substituting (16) into (15) and using the relations of (17)
results in a compact and stable method to numerically calculate
the ε-pseudospectra for non-delayed (k = 0) and delayed
(k > 0) systems.

smin

(
A0 +

∑
k=1

Ake
−τkz − zI

)
< ε (18)

The ε-pseudospectra are the values of z that satisfy (18). The
value of the resolvent can be computed by evaluating the left-
hand side of (18) at a desired grid of values over a region of
the complex plane. The resulting surface will have valleys with
a minimum zero value about the eigenvalues. Narrow valleys
suggest eigenvalues that are less sensitive to parameter change
while wide valleys correspond to the eigenvalues that are most
sensitive to parameter change. Therefore, the ε-pseudospectra
correspond to the open subset of the complex plane bounded
by the level curve formed by the norm of the resolvent equal
to ε−1.

D. Stability radius

We now present the complex stability radius with unstruc-
tured parameter perturbation using the concepts of stability
and ε-pseudospectra. The mathematical definition is extended
to the delayed case and presented in a form that can be
implemented numerically.

Stability radius is defined as the smallest change to a
system parameter that results in shifting eigenvalues so that
the corresponding system is unstable. In terms of the ε-
pseudospectra this is equivalent to finding the smallest mag-
nitude of parameter change where the pseudospectral set is
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grown to just contain part of the positive right-half complex
plane. When the parameter perturbation is allowed to be a
complex value the mathematical definition of stability radius
is:

r = min ε

s.t. ‖R (z) ‖−1 < ε

R (z0) ≥ 0

(19)

This can be further simplified by minimizing ‖R (z) ‖−1 in
place of ε. In addition, we can restrict the minimization to
only pseudospectral values strictly on the boundary of stability,
R (z) = 0.

r = min
R(z)=0

‖R (z) ‖−1 (20)

Finally, using properties of the SVD (17) and the extended
resolvent (16) we can write a compact and stable method to
numerically calculate the complex stability radius for non-
delayed (k = 0) and delayed (k > 0) systems. Therefore,
minimization can be achieved quickly by evaluating the SVD
of the characteristic equation only over values on the imagi-
nary axis.

r = min
<(z)=0

smin

(
A0 +

∑
k=1

Ake
−τkz − zI

)
(21)

III. APPLICATION

We present an application of stability radius to identify how
changes in delayed feedback gains and stance width affect
frontal-plane balance control. Subjects during standing balance
respond to support surface translations in the frontal-plane
with nearly identical center-of-mass motion regardless of their
stance width [14]; however, muscle activity is observed to
decrease as stance width increases, demonstrating a change
in neural control [13]. We used stability radius as a tool to
analyze the changes in stability due to different stance widths
and delayed feedback gains.

First, we give an overview of a mathematical model of
frontal-plane standing balance. Using this model we show
the steps necessary to calculate the stability radius for a set
of parameters. Then, we use stability radius to identify the
feedback gains that produce the maximum stability at nominal
stance width and the feedback gains that produce similar
stability radius at narrow and wide stance width. Finally, we
compare simulated center-of-mass responses at narrow and
wide stance width using the feedback gains identified to have
the same stability radius.

A. Model

We examined a delayed second order system that modeled
human frontal-plane standing balance as a four-bar linkage
(Fig 1) with ankle angle, q, using scaled anthropometric
parameters based on healthy adults.

I (q (t)) q̈ (t) + V (q (t) , q̇ (t)) +G (q (t)) =
−C (kpq (t− τ) + kv q̇ (t− τ))

(22)

Inertial, I , coriolis, V , and gravitational, G, terms were
included in the closed-chain, nonlinear equations of motion.

W

S

q

Fig. 1. Frontal-plane model of human mediolateral balance control. Frontal-
plane motion of the body was modeled as a four-bar linkage. Two bars
represented the legs, the third bar was the torso, and the fourth bar was
the ground. Perturbations were applied as initial conditions in lieu of ground
translations. Important parameters of the model were the hip width (W ),
stance width (S), and ankle angle (q).

Total joint torque applied at the hips necessary to maintain
the initial configuration was generated by feedback gains of
position, kp, and velocity, kv , with a delay, τ , and geometric
scaling, C =

(
S
W

)2
(S is stance width, W is hip width).

Nominal parameters for the model were selected based on
average anthropometric values of height (1.8 m), mass (72
kg), and delay (100 ms). Further details of the model can be
found in Bingham et al. 2011 [16].

B. Analysis

The system (22) was first linearized about the symmetric
equilibrium condition to generate a linear system of first order
equations with states, x = [q q̇]

T .

d

dt
x (t) =

[
0 1
G
I 0

]
x (t)− C

[
0 0
kp
I

kv
I

]
x (t− τ) (23)

Next, using (6) the characteristic equation for the system was
formed.

λ2 − G

I
+ C

(
kp
I

+
kv
I
λ

)
e−τλ = 0 (24)

We explored the stability of the system at the nominal stance
width (S/W = 1) by computing the dominant eigenvalues
across all feasible pairs of delayed feedback gains. Previously
identified stability boundaries were used to restrict feedback
gains that produced unstable dynamics [16]. Across this re-
gion, we examined each stable gain pair in a 100×100 grid.
First, we verified stability by ensuring that none of the roots
of the characteristic equation had a positive real part, which
was accomplished by using the Cauchy residue theorem and
evaluating a path integral over the right-half plane to determine
that there was no residual [21]. To numerically evaluate the
path integral and to determine the values of a limited set
of eigenvalues for each solution we used Cauchy’s argument
principle and a modification to the Lehmer polynomial root
finding algorithm [19], [22].

For representative cases, we computed the ε-pseudospectra
to investigate the sensitivity of the dominant eigenvalues to
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perturbations. For each case, the magnitude of the resolvent
was evaluated across a grid of complex values and these
magnitudes were plotted as level sets to illustrate the pseu-
dospectral variations across the level of perturbation (1.0 ×
10−3 < ε < 2.0).

The stability radius (25) for each stable, delayed feedback
gain pair was also calculated for each of 16 stance widths
ranging from S/W = 0.5 to 2.0. Each stability radius
result was solved using a bisection line search over the set
of complex values along the imaginary axis to identify the
minimum value of the argument.

r = min
<(z)=0

smin

([
−z 1

G
I − C

kp
I e
−τz −z − C kv

I e
−τz

])
(25)

To compare the relative stability of feedback gain pairs
within the same stance width the stability radius was compared
across all feasible gain values at the nominal stance width
(S/W = 1.0). A single pair of delayed feedback gains was
selected that resulted in the maximum stability radius for the
model at nominal stance width.

To compare the relative stability of feedback gain pairs
across stance widths, kp and kv gains were found that resulted
in the same stability radius across stance widths. Across the
range of stance ratios the largest common stability radius was
identified and for each stance width the associated delayed
feedback gain pair was recorded.

Finally, to test the behaviors resulting from the selected
feedback gains, we simulated the motions of the COM using
the fully nonlinear equations of motion in both narrow and
wide stances. An initial velocity disturbance was imposed (
q0 = [ 0 rad, 0.1 rad/s] ) to the model at narrow (S/W = 0.5)
and wide (S/W = 2.0) stance widths using the respective
delayed feedback gain pairs associated with the same stability
radius value.

IV. RESULTS

A pattern of three stable dominant eigenvalues was found
for all stable feedback gains for the model at the nominal
stance width (Fig. 2). As the perturbation ε increased in the
stable range from 0.0 to 0.8, the ε-pseudospectra of these
eigenvalues demonstrated that the most positive eigenvalue
was often least sensitive to parameter changes (Fig. 2). That
is, an eigenvalue further from the imaginary axis (Fig. 2B)
was more sensitive to the imposed perturbation, crossing the
imaginary axis first and rendering the system unstable.

Across all stable feedback gain pairs in the nominal stance
width, the stability radius was found to be lowest at the
boundaries and highest for mid-range gain values (Fig. 3).
The maximum stability radius (r = 0.92) at the nominal
stance (S/W = 1.0) was found when kp = 1540 N-m/rad and
kv = 405 N-m/rad/s. This stable feedback gain pair produced
system behavior that was least sensitive to changes in system
parameters.

Maximum stability radius was found to decrease as stance
width increased. Maximum stability radius at narrow stance
(r = 0.93 at S/W = 0.5) was associated with larger feedback
gains (kp = 7312 N-m/rad, kv = 1982 N-m/rad/s) and stability

σ

0 2
perturbation 
magnitude

stable
jω

5

-10

BA

Fig. 2. Eigenvalues and pseudospectra for a single feedback gain pair at the
nominal stance width. (A) A subset of the infinite number of eigenvalues
for the delayed four-bar linkage model (S/W = 2.0, kp=243 N-m/rad,
and kv=57 N-m/rad/s). Shaded box is complex region surrounding the three
dominant eigenvalues and enlarged in (B) The pseudospectra corresponding
to a perturbation that caused the eigenvalues to go unstable is represented
by dotted lines. The value of the smallest perturbation to cause any of
the eigenvalues to go unstable was the stability radius for this system. For
the neuromechanical system modeled here, the more negative eigenvalue
(unfilled dot) went unstable at a lower level of perturbation than the dominant
eigenvalues that were closer to the imaginary axis (filled dots).
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Fig. 3. Stability radius across all stable feedback gains at the nominal stance
width. The solid lines giving a D-shaped boundary encloses the range of all
stable feedback gains at the nominal stance width (S/W = 1.0). Shaded
intensity represents the value of the stability radius for each stable gain pair.
Lighter values have greater stability radius and resulted in system behavior
that was less sensitive to parameter variations.

radius at wide stance (r = 0.89 at S/W = 2.0) had smaller
feedback gains (kp = 323 N-m/rad, kv = 79 N-m/rad/s)
(dotted line in Fig. 4). Narrow stance was found to be less
sensitive to parameter perturbations than wide stance.

The feedback gains kp and kv that maintained the same
stability radius (r = 0.8) increased by over 16× from wide
(kp=243 N/rad and kv=57 N/rad/s) to narrow (kp=3951 N-
m/rad and kv=1201 N-m/rad/s) stance (solid line in Fig. 4).
This similar level of stability radius was found to be associated
with gains that were within the mid-range of feasible feedback
gains.

Simulations of the model at narrow and wide stance using
feedback gains with the same stability radius (r=0.8) produced
similar center-of-mass kinematics (Fig. 5). Trajectories of the
center-of-mass position were characterized by a near critically
damped response in both cases.
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Fig. 5. Simulated center-of-mass position across stance widths using feedback gains that produce the same stability radius. (A) Although feedback gain
values differed substantially across stance widths, the resulting center-of-mass motion produced in response to a change in the initial state of the system was
similar in narrow (solid) and wide (dotted) stance widths when feedback gains with the same stability radius were used. (B) The resulting torque necessary
to generate the center-of-mass response was an order of magnitude smaller for the wide stance compared to the narrow stance.
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Fig. 4. Stable feedback gains across stance width. The shaded regions defined
all stable feedback gains across stance widths. The dotted line indicates the
feedback gain pairs that produced maximum stability radius across stance
widths. The solid line indicates the feedback gain values that produced the
same stability radius (r = 0.8) across stance widths.

V. DISCUSSION

Here we demonstrated that stability radius is a useful metric
for comparing behavior across neuromechanical conditions
where both biomechanics (plant) and neural control (con-
troller) change during a task. Similar to previous applications
of stability radius [4], [23] we identified the most robust neural
feedback gains (controller parameters) for a given stance width
(plant parameter). In addition, we used stability radius to
quantify and predict how concurrent changes in neural control
and biomechanical configuration affected system behavior.
Using stability radius we identified the underlying delayed
neural feedback gains associated with a stance width that
produced similar center-of-mass behavior. Stability radius may
provide insight into the neuromechanical interactions govern-
ing robust balance control by identifying the neural control

parameters that yield the same stability radius across changes
in biomechanical configuration. This type of analysis could be
extended to understanding general principles of neuromotor
control.

In contrast to typical stability analyses that explore tolerable
delays, in our application the delay was a fixed parameter
reflecting measured neural conduction and processing time.
Standard delayed-system analyses pose a problem of finding
the maximum delay for which the system is stable [18],
[24] or the sensitivity of stability to delays [7]. In contrast,
delays in neuromechanical systems are remarkably invariant
to system changes [13], [25]. Thus, the problem is to identify
how variations in system parameters, and not changes in
delay, cause instability. Stability radius is particularly useful
for delayed systems, because it is not necessary to explicitly
compute any of the infinite number of eigenvalues associated
with a delayed system.

The application of stability radius to a simple neuromechan-
ical model of balance control with delayed neural feedback
improved our ability to compare postural behaviors across
biomechanical configurations. In our prior work using eigen-
value analysis, it was only possible to determine the set of
feedback gains that produced stable behaviors at each stance
width and to compare the relative stability of each solution
within a stance width using the gain margin [16]. However,
it was not possible to compare stability across stance widths
without performing explicit forward simulations of the system
using the different parameter values. This was because the gain
margin is computed with respect to the boundary of stability,
which was specific to each stance width. Thus, gain margin
does not take into account the changes in stability due to
changes in configuration, and provides only a relative measure
of stability within a stance width. In contrast, the stability
radius is an absolute measurement of system behavior which
allows comparisons of feedback gains across stance widths.
For example, whereas the maximum gain margin was identical
across stance widths, the stability radius demonstrated that
narrow stance widths are actually more robust to parameter
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variations, consistent with our previous simulation results [16].
We show that changes in system behavior due to pertur-

bations to the state variables of the model are described by
the stability radius. Previously we demonstrated that precise
tuning of delayed neural feedback gains were necessary to pro-
duce similar behaviors across stance widths, but we lacked a
method to prospectively select the appropriate gains that gener-
ated a desired behavior [16]. We replicated the experimentally-
observed similarity in center-of-mass kinematics across stance
widths in response to imposed motion of the support surface
by selecting feedback parameters with the same stability radii
across stance widths. Thus, feedback gains and stance widths
that reduced the sensitivity of the behavior to parameter
variation were the same as those that led to similar responses
to physical perturbations. Although the similarity in center-of-
mass kinematics could be the result of the nervous system
selecting robust feedback gains it is also possible that the
nervous system selects the trajectory itself to produce robust
behaviors.

Our results support the hypothesis that the nervous system
may employ a neural strategy for selecting feedback gains
and biomechanical configurations that reduces the sensitivity
to parameter variation arising from sensory noise or imperfect
control. The feedback gains in the model that produced maxi-
mum stability radius were in the mid-range of possible stable
values, consistent with the feedback gain values identified by
fitting the model to experimental data [16]. Similarly, research
in upper-extremity control also suggests that motor strategies
are selected that reduce sensitivity to parameter variation in
dexterous tasks [26], [27].

Our results corroborate the idea that stability is maximized
in unstable motor tasks, and stability radius could contribute to
a better understanding of how increased stability is achieved.
Previously, arm impedance has been shown to increase by
muscle co-contraction when generating forces in an unstable
environment [10], [28], [29]. However, limb impedance can
be altered by both muscle activity [30] as well as limb
configuration [11]. Using stability radius, the contribution of
muscle activity and limb configuration on stability could be
dissociated. This may be useful for understanding modulation
of feedback gains in a given context, as well as the selection
of a particular configuration or strategy to achieve a desired
behavior.

Our current formulation for stability radius assumes a
conservative estimate of how parameters affect the stability
of a neuromechanical system. Our perturbation to the system,
E, assumed that the musculoskeletal and neural feedback gain
parameters were equally variable. In this unstructured case, all
parameters contributed equally to the stability radius, leading
to a conservative estimate. It is possible to structure the
parameter perturbations so that only specific parameters are
affected [2], [23], [31]. Such a weighting may be useful in
cases where some parameters are known to a greater accuracy
and are unlikely to be perturbed, e.g. mass of the body, and
could lead to a less conservative stability radius estimate.
We also assumed that perturbations to parameters could be
complex valued, which begs the question: When do real-world
parameters have complex value? While the perturbations to

system parameters are almost always real-valued, it is possible
that imposing complex-valued perturbations could reveal how
transient changes in parameters, e.g. oscillations from sensory
noise, may further alter stability [3], [32]. In cases where it
is reasonable to assume that parameter perturbations are only
achieved through real values, such as uncertainty in knowing
limb inertia, the perturbations can be restricted to only real
values using a slightly more complicated minimization tech-
nique to identify the stability radius [4], [33].

Using stability radius to assess a system’s behavior is
limited to those systems that can be mathematically modeled
and their equilibria determined. This restricts the analysis to
local behavior determined by the fixed points of the dynamical
system. Therefore, stability radius is only descriptive of the
local stability and does not explain the global stability of a
system. Fortunately this does not encumber the method any
more than other traditional stability methods (e.g. Lyapunov’s
indirect method) when examining nonlinear systems as the
local stability of the nonlinear and linearized systems are
equivalent at the equilibria [20]. Furthermore, stability radius
quantifies the sensitivity of an equilibrium point to perturba-
tions or modeling uncertainties, which quantifies the degree to
which the linearized system predicts behavior away from the
equilibrium.

It is important to note that the application presented in this
paper is a first step in verifying stability radius as a useful
method for analyzing robustness of biological systems in
general. To fully validate this method, its applicability should
be verified across multiple tasks and conditions. We propose
that this method may be directly applied to station-keeping
behaviors, such as maintaining balance during standing [16],
maintaining a constant force in an unstable environment [34],
or fixating on a visual target [35]. Cyclical behaviors, such as
locomotion, breathing or heart-beat, would require additional
steps in order to apply the stability radius technique such as
the application of Floquet theory; the resulting system could
then be analyzed using the methods presented in this paper.

It is important to note that the application presented is a
first step in verifying stability radius as a useful method for
analyzing robustness of biological systems. To fully validate
this method, its applicability should be verified across multiple
tasks and conditions. We propose that this method may be
directly applied to station-keeping behaviors, such as main-
taining balance during standing [16], maintaining a constant
force in an unstable environment [34], or fixating on a visual
target [35]. Cyclical behaviors, such as locomotion, breathing
or heart-beat, would require additional steps in order to apply
the stability radius technique. We propose that cyclical systems
could be transformed into the necessary form using Floquet
theory and the resulting system could be analyzed using the
methods presented in this paper.

To conclude, stability radius has many benefits over using
eigenvalues alone for analysis of neuromechanical systems.
Specifically, we were able to quantify the effect of both biome-
chanical and neural parameters on the stability of frontal-plane
standing balance. Stability radius is generalizable and can be
applied to a variety of complex systems that may be nonlinear
and have delays. Thus, stability radius lends itself to additional
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applications that were not explored in the example presented in
this paper. Stability radius can be used as a tool for bifurcation
analysis to identify critical parameter values that cause large
changes in system behavior [36]. Often the parameters in
neuromechanical models are unknown, using stability radius to
determine the sensitivity of stability to these parameters can
help to identify error bounds and simulation accuracy [37].
Determining muscle activation and musculoskeletal parameters
that reproduce observed behaviors is often achieved through
optimization [38]–[40]. However, simulations based on the
optimized parameters are often unstable, which affects the
ability to produce forward simulations over a long duration
[41]. This affects the ability to perform dynamic optimization
of parameters that rely on completion of a movement [42]. In
contrast, selection of muscle activation patterns that produce
a system with stable eigenvalues generate simulations that
are stable and can be run for much longer simulation times
[43], [44]. Further, parameters selected based on stability
criteria result in responses to perturbations that are more
similar to experimentally-measured responses than those found
using minimum muscle stress criteria alone [43]. Stability
radius could be used as an additional optimization criterion
to identify parameters that generate stable behaviors, which
would improve both optimization speed, as well as identifying
parameters that could generate more physiologically-realistic
behaviors. In short, stability radius offers a metric for quantify-
ing the stability and dynamical responses of parameters within,
and across, individuals, which offers a useful tool for the
analysis of neuromechanical systems. In contrast to classical
stability analyses from control theory, stability radius can con-
currently evaluate the effect of active and passive mechanisms
affecting system stability; this could be an important tool for
the design of assistive and rehabilitative devices for improving
motor function.
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